M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2015
MT 3964-FORMAL LANGUAGES AND AUTOMATA
Date: $11 / 11 / 2015$
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

ANSWER ALL QUESTIONS

I a) Construct a finite automaton to accept all four digit positive even integers.
[OR]
b) Construct a finite automaton accepting all integers $x \equiv 1(\bmod 3)$.
c) i) Let L be the set of all strings over alphabet $\{0,1\}$ ending in 11 and containing odd number of 0 's. Construct a DFA to accept L .
ii) An NFA has moves $\delta\left(q_{0}, a\right)=\left\{q_{1}\right\}, \delta\left(q_{0}, b\right)=\phi, \delta\left(q_{1}, a\right)=\left\{q_{1}\right\}$,
$\delta\left(q_{1}, b\right)=\left\{q_{2}\right\}, \delta\left(q_{2}, a\right)=\phi, \delta\left(q_{2}, b\right)=\left\{q_{2}\right\}$. Find an equivalent DFA.
[OR]
d) i) Let r be a regular expression. Then prove that there exists an NFA with \in - moves that accepts $\mathrm{L}(\mathrm{r})$.
ii) Let L be a set accepted by a nondeterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.
II a) Define regular sets. Also write any two properties of regular sets.
[OR]
b) State and prove pumping lemma.
c) i) Construct an NFA with \in - moves for the regular expression $(01+10)^{*}+\left(1(00+1)^{*}\right)^{*}$.
ii) Design a DFA that reads strings made up of the letters in the word ' CHARIOT' and recognizes these strings that contain the word 'CAT' as a substring.
[OR]
d) Minimize the following automaton.

	0	1
$\rightarrow \mathrm{~A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

III a) Construct a grammar to generate the set of all palindromes over $\{a, b, c\}$.
b) Define elimination of unit productions and give an example.
c i) Construct a grammar which generates all five digit positive even integers.
ii) Construct a context-sensitive grammar to generate $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\} .(7+8)$
[OR]
d Let G be the grammar with rules $S \rightarrow 0 A 0 / 1 B 1 / B B, A \rightarrow C, B \rightarrow S / A, C \rightarrow S / \in$
(i) Eliminate \in productions.
(ii) Eliminate unit productions.
(iii) Eliminate the useless symbols.
(iv) Write the grammar in CNF form.

IV a) Define the different types of languages accepted by a pushdown automaton.

[OR]

b) Define left most and right most derivations and give an example.
c) If a language L is accepted by a PDA A by empty stack then prove that there exist a PDA B accepts the same language L by final state.

[OR]

d) Design a PDA TO accepting $L=\left\{a^{n} b^{2 n} / n \geq 1\right\}$ by
(i)Empty stack.
(ii) Final state.

V a) Discuss about any two properties of a Turing Machine.

[OR]

b) Is it possible that a Turing machine could be considered as a computer of functions from integers to integers? If yes, justify your answer .
c) Design a TM to accept the language $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.

[OR]

d) Design a Turing Machine to compute
(i) $f(n)=n+2, n \in N$.
(ii) $f(n)=2 n+1, n \in N$.

